Improving Security of Autonomous UAVs Fleets by Using New Specific Embedded Secure Elements

A Position Paper

Raja Naeem Akram¹, Pierre-François Bonnefoi², Serge Chaumette³, Konstantinos Markantonakis⁴ and Damien Sauveron²

¹ Department of Computer Science, University of Waikato, Hamilton, New Zealand
² XLIM (UMR CNRS 7252 / Université de Limoges) Département Mathématiques Informatique, Limoges, France
³ LaBRI, Bordeaux 1 University, Talence, France
⁴ Information Security Group Smart Card Centre, Royal Holloway, University of London, Egham, United Kingdom

Damien Sauveron
http://damien.sauveron.fr/

10/09/2014
Roadmap

- Introduction
- Contributions
- Adversary model
 - Capture of UAV by an Attacker
 - Attacks on a “Captured” UAV
 - Attacks on a UAV in a Network
 - Rationale for the Adversary Model
- Requirements
 - Functional Requirements
 - Security Requirements
- Candidate Secure Elements
- Future works: Our vision on how to secure UAVs fleet
- Questions/Discussions
Introduction

• UAVs fleet are more effective and may be costless than a single big drone

- Each UAV can be equipped with different sensors
- They can collaborate altogether and fly in swarm
- They can cover a larger geographic area
- If one UAV is destroyed, others can continue the mission

• For all these reasons UAVs fleets are becoming more apparent.
Introduction

- Civilian applications
- Military applications
Introduction

- Civilian applications

Security may not be an issue
Introduction

- Military applications

- UAVs may store and exchange lot of assets
 - Flight-plan for the mission
 - Photos
 - Coordinates of points of interest (enemies or allies)

Security is an issue!
• Classical security solutions from world of MANETs are **not sufficient** (reputation, virtual currency, etc.) for the **considered adversary model**
Contributions of this position paper

- We propose an original discussion on the adversary model for UAVs fleets
- We define the list of security requirements for UAVs fleets
- We propose some insights of how to implement these requirements with embedded secure elements (SE)
- We provide a comparison with existing works that proposed the deployment of “secure elements” on unmanned vehicles.
Adversary model

- We consider a strong adversary model with a high attack potential.
 - the adversary has capabilities and knowledge to capture a UAV in a functional state
Adversary model

- In a **functional state** means:
 - if there are self destruction mechanisms the attacker is able to bypass or deactivate them

- Worst, the attacker might perform attacks during the flight
Adversary model: which kind of attacks?

- Side channel attacks

SPA on DES ciphering
Adversary model: which kind of attacks?

- Fault attacks with a laser
Adversary model: which kind of attacks?

- Physical attacks (microprobing, modification with a Focused Ion Beam System, etc.)

- There exist plenty other attacks referenced in the paper.
Adversary model: which kind of attacks?

- Attacks on a UAV in a Network
 - They are similar to those existing in MANets, DTN and Wireless Sensors Networks
 - The easiest attack is Denial-of-Service (DoS).
 - It can be achieved at physical, link, network or transport level
 - If communications are not ciphered, the opponent can perform eavesdropping, packet injection or corruption and Man-in-the-Middle or relay attacks
 - The attacker can also build a rogue UAV to attempt some attacks on routing protocols (blackhole attack, selective forwarding attack, sinkhole attack, rushing attack, sybil attack, wormhole attack, etc.)
 - Application-specific attacks can also exist (like source authentication).
Adversary model: rationale

- Fault and side channel attacks are already present on other computing systems

 For instance, in 2012, A. Moradi, M. Kasper, and C. Paar have done a Correlation Power Analysis on Virtex-4 and Virtex-5 family, i.e. Xilinx FPGAs that are widely used in UAVs (including the Predator).

 - They have shown that the encryption mechanism can be completely broken with moderate effort.
Requirements

- Functional requirements:
 - Autonomy: The fleet should be autonomous and should not rely on communication with its base/user
 - to be more stealthy in the adversary conditions of the mission
 - Management: The fleet should be easy and transparent to manage both in terms of functionality and security
 - management should be possible prior or during the fleet operations
 - Reliability: The fleet should be reliable
 - each UAV with a dedicated mission may, for some reasons, decide to entrust its mission to another UAV according to the capabilities in term of equipments (e.g. sensors) and software stack of this UAV.
 - Efficiency: A UAVs fleet has to perform optimally in the adversely territories/environments.
 - It thus must be able to analyze the situation and make decisions in real-time.

- The fleet should be self-organized and should be equipped with some sort of swarm intelligence.
Requirements

• Security requirements:

 - (SR1): The UAV should be SE-driven to ensure security and privacy of its missions.
 - (SR2): The whole UAV should be tamper resistant, or at least a part of it (the SE)
 - (SR3): The UAV should provide assurance in implemented security mechanisms to its user
 - (SR4): The UAV at a very basic level should provide a secure unique ID on which the whole fleet can rely for its management and networking operations
 - (SR5): The UAV should provide secure key management and cryptographic features to protect communication integrity and confidentiality among the members of the fleet
Requirements

- **Security requirements:**
 - (SR6) UAV should provide a secure storage for data collected (e.g. measurements, photos) and/or those used for the purpose of the mission (e.g. flight-plan for the mission, coordinates of points of interest)
 - (SR7) The UAV should provide a secure multi application platform
 - this requirement is justified since in the context of SE-driven UAV there will be installation of new applications, transfer or update of applications

- An additional functional requirement may be optionally added if the context of SE-driven UAV is accepted:
 - (FR5) the SE may have its own communication capabilities to communicate with other SEs which can form an overlay network (for specific control operations)
Candidate Secure Elements

- **Wireless Sensor Node**
 - It has communicating capabilities that would satisfy FR5
 - However a WSN cannot be the SE because in case of capture it fails to satisfy most of the security requirements

- **Trusted Platform Module**
 - Fails to satisfy several security requirements:
 - SR3 for which the device has to provide an assurance of its own security
 - SR6 as it does have small (secure) storage but mostly for cryptographic material
 - It cannot execute code, thus it fails to satisfy SR1, and SR7
Candidate Secure Elements

- **Smart Card** intrinsically supports SR2 to SR6
 - User Centric Smart Card Ownership Model (UCOM):
 - It provides a dynamic, scalable and flexible architecture for multi-application platforms
 - the UCOM proposal of Trusted Execution and Environment Manager (TEM) has the potential to provide a strong trusted device and (application) execution architecture
 - do not possess the long range RF communication capabilities required by FR5

- **Active RFID**
 - At best, current Active RFIDs are only supporting SR4, SR5 and FR5.
Our proposal

- **Active Radio Frequency Smart Secure Device (ARFSSD)**
 - our first prototype will be based:
 - on an ARM-based platform as the ubiquitous Raspberry Pi embedding Linux and the PC/SC middleware
 - on a smart card reader
 - on the UCOM smart card
 - on the RF communication module
Summary

<table>
<thead>
<tr>
<th></th>
<th>SR1</th>
<th>SR2</th>
<th>SR3</th>
<th>SR4</th>
<th>SR5</th>
<th>SR6</th>
<th>SR7</th>
<th>FR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>TPM</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart Card</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Active RFID</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Our proposal</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Future works: Our vision on how to secure UAVs fleet

Application Identities: 1, 2, 3, 4
Network Identities: A, B, C, D
Questions?
Discussions!