
Secure Collaborative and Distributed Services in the Java Card Grid Platform

Serge Chaumette Achraf Karray Damien Sauveron
LaBRI, UMR CNRS 5800 LaBRI, UMR CNRS 5800 XLIM, UMR CNRS 6172

Université Bordeaux 1 Université Bordeaux 1 Université de Limoges
351 cours de la Libération 351 cours de la Libération 123, avenue Albert Thomas
33405 Talence, FRANCE 33405 Talence, FRANCE 87000 Limoges, FRANCE

chaumett@labri.fr karray@labri.fr sauveron@labri.fr

ABSTRACT

Ensuring the security of services in a distributed system re-
quires the collaboration of all the elements involved in pro-
viding this service. In this paper we present how the secu-
rity of collaborative distributed services is ensured in the
Java CardTM1 Grid project carried out at LaBRI, Labora-
toire Bordelais de Recherche en Informatique. The aim of
this project is to build a hardware platform and the asso-
ciated software components to experiment on the security
features of distributed applications. To achieve this goal,
we use the hardware components that offer the highest se-
curity level, i.e. smart cards. We do not pretend that the
resulting platform can be efficient, but we believe that it is a
good testbed to experiment on the security features that one
would require for real distributed applications. The kind of
applications (and the services they use) that we run on our
platform are those that require a high level of confidential-
ity regarding their own binary code, the input data that they
handle, and the results that they produce. This paper fo-
cuses on the collaboration aspect of the secure services in
our platform.

KEYWORDS:
���������
	�����
�������������	�����
���������� ���!�#"�$%��&�

��&��!����'(&����)	+*�,#,#��"-*��������#*�.0/

1. INTRODUCTION
Because of the development of the technology, the users are
asking more and more in terms of computing resources and
networks capabilities (bandwidth, mobility, etc.). More-
over, these services should be able to collaborate together to
achieve the best results for the end users. To satisfy all these
requirements, the manufacturers have developed new tech-
nologies to connect the resources (WiFi, Bluetooth, etc.)

1Java and all Java-based marks are trademarks or registered trademarks
of Sun microsystems, Inc. in the United States and other countries. The
authors are independent of Sun Microsystems, Inc. The other marks are
the property of their respective owner.

and to support the development of applications (Java, .NET,
etc.). Thus, by federating such shared resources, a user can
have access to a large platform (e.g. a grid [2, 5]) to execute
his services.
However, potentially unknown persons could be authorized
to execute their services on such a platform, and the users
of such systems must accept to have their services executed
on resources that are under the control of someone else who
they potentially do not even know. Therefore security is a
big concern. First, the owner of the code or more precisely
the code itself must be protected from the platform that ex-
ecutes it and from other services executed on the same plat-
form. Second, the computing resource that runs the code
must be protected from this code. Even though there are
software and hardware level protections, it is clearly not
sufficient. If someone uploads a code to my workstation so
that it is executed, nothing can prevent me from dumping
the memory to work out what it is doing, or even from trac-
ing the instructions executed by my processor. If I upload a
code to the machine of someone else, nothing will prevent
my code from doing malicious operations, even though sand
box approaches can solve some of the problems.

Smart cards [16] provide solutions, at both hardware and
software levels. At hardware level, the cards are built so as
to resist any physical attack. Of course, attacks remain pos-
sible but they will not be feasible in a reasonable amount of
time. The processors that can be found in standard work-
stations do not offer the same protections. When a code
is loaded inside a card, it can neither damage the card or
access the assets that it contains, nor can it be reverse en-
gineered by the owner of the card. At the software level,
the cards and the applications that they embed are evaluated
and certified by well defined procedures (e.g. ITSEC - In-
formation Technology Security Evaluation Criteria - or CC
- Common Criteria) in government approved agencies or
companies (e.g. ITSEF - Information Technology Security
Evaluation Facility).

Furthermore, even though the cards are not very efficient
in terms of computation power right now, the resources

that they provide in terms of memory and computing ca-
pabilities [17] have increased a lot. Cards that will provide
1 Gigabyte of memory and more efficient processors are ex-
pected as soon as 2007.
Therefore we have begun the Java Card Grid project. Within
the framework of this project we have designed and imple-
mented a platform that can be viewed as a grid of smart
cards. As of today, we have 32 card readers that are con-
nected together. The goal of this platform is to experiment
security features that will help in supporting or even design-
ing secure real size grids and the services running on top of
them. This platform and more precisely the collaborative
services that it supports are the topic of this paper.
Before describing in section 2 the services available in
our platform, the most relevant related projects about on-
card services are presented and compared with our own ap-
proach. Then, in section 3, we describe the overall Java
Card Grid platform at both hardware and software levels.
Section 4 focuses on how, in our platform, the services are
implemented, published to the rest of the world, and then
used by a client application or by another card. Then, in
section 5, we present the collaborative approach between
cards that make then possible to provide altogether a given
service and construt higher level applications by compos-
ing a number of such services. We eventually conclude in
section 6 on the future evolutions of our platform.

Figure 1: The Java Card Grid platform.

2. RELATED WORK
We have identified a number of projects, the aim of which
is to integrate Java Cards and the services they provide in
a distributed environment. The goal of all the frameworks
that we have studied is to integrate the on card services as

standard services: Corba[13] for ORBCard [3]; Jini[18] for
JiniCard [11]; RMI[7] for JCRMI [12]. Once integrated, the
functionalities offered on card become transparently usable
from the outside.
It is clearly not the goal of these approaches to use the
cards to run CPU demanding applications, or even really
distributed applications. They are more designed in terms of
local services. On the contrary, we intend to use the cards as
cooperating computational resources to support distributed
services that we call distributed inter card services. To
achieve this goal our framework makes the cards proactive,
and this is one of the major originalities of our work. More-
over, in our platform, both computation (i.e. service execu-
tion) and inter card communication are secured. In the rest
of this section, we describe the most relevant environments
that compare to our work.

2.1. JiniCard
The JiniCard [11] approach consists in integrating the ser-
vices of a smart card into a Jini environment. The card is
supplemented with off card services included in a mobile
code, following the Jini approach. One of the main advan-
tages is to overcome the static characteristics of the card.
Any Jini application will be able to discover and use the
services of the card in a spontaneous way. The JiniCard
architecture is based on a software component called the
CardExplorerManager (CEM), the aim of which is to ex-
plore the services included in the card. Once these services
have been discovered, objects representing them will be reg-
istered in the lookup server. Any object will then be able to
discover these services (thanks to the lookup) and to call
them. This architecture makes it possible for a card to ex-
pose its services to the other components of the network.
Contrary to our approach, a service cannot be implemented
and distributed on several cards with a card calling a sort of
microservice on another card (i.e. to delegate some task to
the other cards).

2.2. ORBCard
The ORBCard [3] platform is designed to integrate smart
cards into Corba based distributed systems. The central el-
ement of this architecture is the ORBCard adaptor, which
is a bridge between the card and its external environment.
The ORBCard adaptor makes it possible for Corba objects
to communicate with the services present on a smart card
in a transparent way, as if they were communicating with
an ordinary Corba object. The ORBCard adaptor trans-
forms the request to an appropriate APDU representation.
To communicate with an application of the card, the Corba
object in the client application contacts the ORBCard adap-
tor through the Corba bus. The ORBCard adaptor trans-
forms the request to its APDU representation and sends it

to the application loaded on the card. After the execution
of the command, the adaptor receives a response from the
card, it converts it into a Corba answer (simple type: void,
int, byte, etc.) and transmits it back to the Corba object of
the client application.
As it is the case with JiniCard, ORBCard does not allow to
implement distributed inter card services.

2.3. JCRMI
In Java Card 2.2 [12], Sun includes a new way of commu-
nicating with applets: Java Card Remote Method Invoca-
tion (JCRMI). From a practical point of view, the object
in the card must be described by an interface that extend
the java.rmi.Remote interface. A client gets access to
this object when selecting the applet, getting back a JCRMI
reference to the object. To invoke a method on such an ob-
ject, the client sends an APDU command that contains the
identifier of the object, the identifier of the method, and its
parameters if any.
As in the previous solutions, the card is not proactive and it
cannot propose distributed inter card services.

3. THE JAVA CARD GRID PLATFORM
The goal of the Java Card Grid project is to provide a hard-
ware platform, a software framework and the associated ad-
ministration tools, to deal with a (large) number of intercon-
nected smart cards.

3.1. Hardware Platform
As illustrated figure 2, the hardware platform that we have
set up contains two grids that are connected together by the
network.

NETWORK

Untrusted Environment
Environment

Customer

Grid of Java Cards = Trusted Env. Grid of Java Cards = Trusted Env.

Secure channel

Physical links

1�1�11�1�11�1�11�1�12�22�22�22�2

3�3�33�3�33�3�33�3�33�3�3
4�4�44�4�44�4�44�4�44�4�4
5�5�55�5�56�6�66�6�67�7�7�78�8�8

9�9�99�9�99�9�99�9�99�9�9
:�:�::�:�::�:�::�:�::�:�:
;�;�;;�;�;<�<�<<�<�<=�=�=�=>�>�>�>

????
????
????
??

Figure 2: A hardware platform based on Java Card grids.

The hardware fits in a wall mount cabinet of 19U. Each grid
is composed of:

• a PC which needs 2U;

• two 2U racks from SmartMount, each one having 8
CCID readers from SCM Microsystems, i.e. we have
a total of 16 CCID readers;

• three USB 7-port hubs (placed in a empty 2U rack) to
connect the readers to the PC and to power the readers;

• Java Cards of different manufacturers plugged in the
readers which then power them.

We have also equipped one of the PCs with a LCD monitor
and a special rackable keyboard (with an integrated touch-
pad) that we use to control the servers. A picture of this
platform is shown figure 1.

3.2. Software Framework
The software framework that we have designed and imple-
mented comprises two layers: a low level layer that uses
PC/SC2 and that handles the PCs, the readers and thus the
smart cards, and a high level layer that manages the dis-
tributed computing framework that we offer.

3.3. Administration Tools

We have begun to design and implement tools to support re-
mote administration of the grid of Java Cards, i.e. to mon-
itor the topology of the grid, to detect the defective cards,
to deploy new applications, etc. As of writing, a remote
topology control tool (i.e. to see which readers are free and
which ones contain a card, to track the evolution of the grid,
etc.) is available.
The tools and APIs that we are currently working on are
dedicated to the automatic and dynamic deployment of ap-
plets, and thus of services, on a set of Java Cards. Since
most of the Java Cards are GlobalPlatform3 [6] compliant,
we only need to develop an implementation that uses this
standard to be able to load and delete embedded applica-
tions. We plan to use the open source GlobalPlatform li-
brary [14], recently developed by Karsten Ohme, to add this
functionality to our platform. With this tool, we will be able
to install, delete, and manage services on the cards.

4. SERVICES IN THE JAVA CARD GRID
By using the features provided by our communication
stack [4], it is now possible to easily and quickly develop

2PC/SC [15] is a standard that provides a high level API to communi-
cate with smart card readers.

3GlobalPlatform is a standard that specifies APIs to manage multiap-
plication cards.

high level services (or applications) that will be embedded
in the cards of the grid. In our framework, a Java Card
is seen as a container for services. The provider develops
the applet implementing the service and describes its inter-
face using XML. This is then uploaded to the card. Poten-
tial clients are provided with a list of the available services.
For this purpose, the software framework initially scans the
grid, and extracts the services available on each card. The
client can then select and remotely use one of them. In the
rest of this section, we get back in more details to these
different phases, which are shown figure 3. We eventually
illustrate the whole process by means of an example.

Figure 3: Main steps to communicate with a service.

4.1. Publication of Services
The provider uploads the implementation of its service to
the card and then publishes its descriptor in the ServiceCat-
alog application, a local registry, which is present on each
card. This operation is done by sending the service descrip-
tor to the ServiceCatalog application. The information con-
tained in the descriptor is mainly composed of the identifier
of the applet, a description of the operations that it provides
and their parameters if any. This information is formatted
using XML. The ServiceCatalog application maintains and
publishes the list of descriptors of the available services.

Service Descriptor
We have chosen XML to describe services. The descriptor
comprises the identifier of the service, the operations that
it offers and their parameters if any. The descriptor of a
service is generally smaller than the implementation of the
service itself. It is then cheaper to distribute and store. A
service descriptor precisely contains:

• The identifier of the service. Each service in the card
must have a unique identifier. It corresponds to the
identifier of the applet that implements this service (i.e.
the AID).

• The name of the service.

• The methods of the service. The method elements
describe the different operations offered by the ser-
vice. Each service must provide at least one operation.
For each operation, the descriptor gives its name and
the value of the INS byte of the corresponding APDU
command. The arg tag describes the possible param-
eters needed by this operation. The type tag is the
return type of the method. This can be any supported
primitive data type (i.e. byte, short, boolean and
void) or String. The String type is not sup-
ported by the cards, but it is translated to a byte
array on the client side. Each method description
can have a documentation tag that can be used to
describe the operation.

<applet name="HelloWorld" id="11223344556611">
<method>

<name>sayHello</name>
<ins>02</ins>
<arg>byte</arg>
<type>String</type>
<documentation>My first Card Service</documentation

>
</method>

</applet>

Listing 1: Service Descriptor.

The descriptor shown Listing 1.1 describes a ser-
vice called HelloWorld, identified as service number
11223344556611. It contains only one operation called
sayHello, which is internally known by the service as
operation 02. It requires one parameter of type byte and
it returns a type String. A short description of this oper-
ation is given in the documentation tag.

4.2. Service Discovery
The service discovery phase can be broken into two stages.
The first stage consists in scanning the grid to discover the
cards, and the second stage in scanning the cards to discover
the services that it contains.

Scanning the Grid for Cards
During this stage, we establish the state of the grid, i.e. we
detect the cards that are present and the empty readers. For
each reader which is found, an instance of the CardProxy
class is created (cf. figure 4). The CardProxy maintains
all the information about the reader it is in charge of, and
about the card that it possibly contains. It knows the name
of the reader (provided by PC/SC), its state (card present
or not) and the name of the card (contained in a specific
applet present on the card) if present. The CardProxy is a
sort of bridge between the client applications and the Java
Cards. Thus, all communication with a card will go through
the corresponding CardProxy. Once the initial state of the
grid has been established, any change is detected. For this

purpose, the scanning layer contains a listener thread that
detects significant events, such as the insertion or tearing of
a card.

Figure 4: The services management layers of the Java Card
Grid.

The insertion and tearing of a card are handled as follows:

• When a card is removed, the grid server that hosts
the CardProxy notifies the client applications that were
connected to this card. The client applications can then
take the appropriate measures.

• When a card is inserted, the scanning layer notifies the
service discovery layer which then explores the card to
extract the list of available services as explained below.

Scanning the Cards for Services

Each card that is found in the previous stage can now be
examined. A query is sent to the ServiceCatalog applet to
request the list of available services. The response contains
all the service descriptors stored in the card. A list of all
the services available in the grid, their localization (i.e. the
name of the card and the reader where it is inserted), and
their descriptors can then be built. It will be kept up to date
when cards are inserted or removed. This list will be passed
to clients when they connect to the grid server.

4.3. Accessing Services
As soon as a client connects to the grid server, he is provided
with the description of all the available services, and with
their localization. He can then choose the service that he
wants to invoke by using a dedicated graphical interface. At
that point, he only needs to provide the parameters required
for the execution of this service.
The services access layer, located on the client machine,
will achieve the following operations to invoke the selected
service:

1. Select the applet (i.e. the service). As the names of the
reader and the applet are known, the client application
sends a select APDU command to the concerned
CardProxy. The CardProxy will simply forward the
command to the card.

2. Establish a secure channel between the client applica-
tion and the service. To achieve this goal, we have de-
signed our own cryptographic protocol [10]. It relies
on the exchange of challenges that are used to gener-
ate session keys, based on static keys known a priori
by the two entities.

3. Convert the provided parameters to bytes in order to be
able to build the APDU command which will be sent
to the card.

4. Effectively invoke the operation chosen by the client.

5. Extract the result from the response APDU that the
client application receives from the card when the ex-
ecution of the command is finished.

4.4. A Service Example
The example that we present in this section is a toy appli-
cation that we have kept simple for the sake of illustration.
It shows the implementation and usage of services but does
not really take advantage of the grid hardware architecture.
It is an internet bookmarks management application for Java
Cards. It provides an easy way to store, retrieve, query and
carry URLs on the move. The service makes it possible to
store a new URL and an associated name, to delete a URL,
to search for a URL based on a part of it or on a part of its
name, and to retrieve the URLs contained in the card.
We first wrote the applet that implements the service, we
then wrote the XML descriptor for this service (a part of
which is shown Listing 2), and we installed both the applet
and the descriptor on the cards of the grid.

<applet name ="MyFavorites" id="112233445501">
[...]

<method>
<name>searchURL</name>
<ins>06</ins>
<arg>String</arg>
<type>String</type>
<documentation>Search an URL</documentation>

</method>
[...]
</applet>

Listing 2: MyFavorites Service Descriptor.

The service can then be used for instance with our client
side generic tool (cf. figure 5). This tool uses the XML
description of a service to automatically build a graphical
interface that makes it possible to use it (i.e. input parame-
ters, display result, etc.).

Figure 5: Using the service example.

Note that the URLs and their names are represented by
Strings on the client side, but they are converted into
an array of bytes to be stored in the card, since the String
type is not supported by Java Cards.

5. COLLABORATION OF SERVICES

Most of the time, the components of a distributed system
need to communicate with each other to achieve some sort
of cooperation. Therefore offering a framework that makes
the cards active, i.e. able to take the initiative of a commu-
nication (possibly with an other card), is mandatory. When
such a mechanism is available, the nature of the collabora-
tion for the services between the cards can be double. First,
the overall execution of a single service can be distributed
over several cards. In this case the different parts can be
viewed as microservices for the global service itself. We
call such a service, a distributed inter card service, because
its behaviour depends on the cooperation of all the cards.
Second, the collaboration of services can also exist between
cards themselves when a card calls one or more services on
one or more other cards. In this case, the card can do what
we call a composition of services. The difference between
the two cases is that the first is at low level to achieve one
service, and the second is at high level to achieve a complex
task composed by several basic services (see below).

Of course, an external client of our platform can compose
services itself.

5.1. Proactivity mechanism: the heart for the
collaboration

Smart cards are passive. They work according to a mas-
ter/slave model. The host application (i.e. the application
which is out of the card) is the master, and the card applica-
tion is the slave that provides the service. The card is always
waiting for a command, and never takes the initiative of a
communication with the outside. Because of this passive
mode, the card can neither explore its environment nor ini-
tiate any interaction with external components or services.
To make the card active, i.e. able to send a request, for ex-
ample to invoke a service on an other card, we have set up
a simple mechanism which consists in asking the card if it
wishes to send a request. To achieve this goal (as illustrated
figure 6) an APDU command is sent to the card and if the
card has a request to send, it puts it in the APDU response.
The mechanism is similar to what is used for SIM cards

a request?
Do you have

 = YES

CARD

NO

YES NO

NO

APDU
Command

Response to the previous
=

request?

APDU
Command

handling
common

Handling of
the response

APDU Command

APDU Response
Common

YES
to send a request?

Does
the card wish

APDU response
containing a

request

Figure 6: Execution model of a proactive card.

in cellular phones [8, 9]. When an APDU response is re-
ceived, it is handled by the PC (and more precisely by the
CardProxy) which acts as a router. If the response matches
a specified format (not detailed here, but which contains all
the information to locate a precise service on a precise card
of the grid), it means that it is a method invocation of a ser-
vice located on another card. With this information, the PC
forwards the request to the target card. The APDU com-
mand is also contained in the APDU response of the client
card.
To simplify the calls, we have set up a Stub/Skeleton mecha-
nism generated from: an interface which represents the ser-
vice; its AID; the name of the card where it is installed.
Figure 7 illustrates the remote invocation process between
cards.
Nevertheless, due to their passive nature, the cards are only
able to execute code between an APDU command and the
associated APDU response (excepted the waiting loop for
the next APDU command). According to our model, if a

1: User request
2: Method invocation

4: Result of the invocation
3: Method invocation

5: Result of the invocation
6: Result of the request

Result of the request
Internet

4

Server card

5

6

2

1

Client card

Java Card GridUntrusted NetworkClient Environment

User request

3

@ @A A
B B B B B BB B B B B BB B B B B BB B B B B BB B B B B BB B B B B BB B B B B BB B B B B BB B B B B B
C C C C C CC C C C C CC C C C C CC C C C C CC C C C C CC C C C C CC C C C C CC C C C C C
D D D D D DD D D D D DD D D D D DD D D D D DE E E E E EE E E E E EE E E E E EE E E E E EF F F F F F FF F F F F F FG G G G G G GG G G G G G G

HHHHHH
HHHHHH
HHHHHH
HHHHHH
H

IIIIII
IIIIII
IIIIII
IIIIII

JJJJJJ
JJJJJJ
JJJJJJ
JJJJJJ
J

KKKKKK
KKKKKK
KKKKKK
KKKKKK

Figure 7: Remote method invocation between cards.

card calls a service (i.e. if it sends an APDU response con-
taining a request), its execution (from the application level
point of view) is stopped. Thus we have a model with syn-
chronous method calls that can be unsuitable for some kinds
of applications.
Moreover a related problem is to continue the execution of
the code at the correct point. Indeed, Java Card respects
a model where all the APDU commands are handled by
the environment of execution (so-called JCRE) before they
are forwarded to the process method of the applet (the
unique entry point of a Java Card application).
Finally, it is not possible to receive an APDU command dur-
ing the execution of an applet, i.e. while an APDU com-
mand is being processed and before its associated APDU
response is sent back by the card. This is due to the fact that
the card is a mono-threaded server that can serve only one
request at time, without the capability to queue any other
call.
Due to all these constraints, an applet cannot call an outside
service and wait for the response (that would be a second
APDU command). Therefore, to make the cards proactive,
we have also set up a mechanism that makes it possible to
continue the execution at the correct point when the result
of the service invocation comes back. Thanks to our mech-
anism, when a client card (i.e. a proactive card) calls a
service on a server card, it then continues the execution
where it was previously stopped when the call occured. To
implement such a feature, our solution is based on the usage
of the switch keyword where two cases are considered, i.e.
before and after the invocation as shown in listing 3.
We have used the proactive mechanism with success to im-
plement the collaborative services presented below and in
the CBP – Air France application [1].

5.2. Distributed inter card services
A distributed inter card service is a service involving sev-
eral cards. To perform its job, calls are done using the
proactive mechanism presented above. Most of the time,
the execution of the caller card depends on the execution of
the receiver card.
Such a service could be a datamining service hosted on a
master card, with the database and the entities performing

// b is a global variable previously initialized to 0

switch(b)
case 0x00 : // Common entry point: BEFORE

instruction 1 // Instructions
... // to do
instruction n // before to call the service

call to the stub class // Format the request
// and send it to execution environment

increment b // Save that a call is in progress

break; // Return from the \ lgg{process} method and
// real emission of the call in the I /O interface

case 0x01 : // Entry point for the continuation of code: AFTER

get the result // Result of the request

instruction n+1 // Instructions
... // to do
instruction n+m // after the call to the service

Set b to 0 // Save that the call is done

break; // Return from the \ lgg{process} method
// and send the APDU response

Listing 3: Continuation for the proactive mechanism.

the search process: distributed over a set of other cards.
When an external client calls the master card, this card in
turn calls each card involved in the process so as to start the
local datamining algorithm with the specified parameters,
and then collects all the results before sending them back
to the client. In this example, the local datamining service
on each card means nothing in itself; it exists only because
it is a part of a global computation. For this reason we can
consider it as a microservice and not a service.

5.3. Composition of services
Contrary to the distributed inter card service presented
above, the composition of services enables to perform a
complex task as an aggregation of services with possible de-
pendencies. In this case, the call from a card to another card
for a whole service are done in a transparent way (i.e. with-
out the knowledge about if the called service is executed on
the server card or distributed on several cards behind). This
approach is a bit different than the previous inter card ser-
vices where the service to achieve is distributed on several
computational resources.
Such services are currently in development in our platform.
Moreover we also plan to experiment about the composition
of service at external client side with the University of Sfax.

6. CONCLUSION AND FUTURE WORK

The platform is operational and some services have already
been tested. These services can be executed in a secure
way, because they are deployed on a secure hardware (smart
cards) and the communications between them are also se-
cure, even though this could not be presented in details in
this paper [10].

At the beginning, the Java Card Grid project was only in-
tended as a proof of concept. We only planed to build a
prototype platform. But now that it is operational, we have
found a lot of interest in the university community, the of-
ficial agencies and the industry. For instance we got the
“most innovative technology award”, delivered by a com-
mittee comprising industry leaders, at e-Smart 2005[1]. We
are now planning to set up a platform with 1000 cards to
deploy applications that can handle real size data. We also
plan to use the next generation cards that should be com-
mercially available in 2007. They will provide 1 Gigabyte
of memory, efficient processors, a full Java virtual machine
and a TCP/IP stack. This will make it possible to experi-
ment on a real size distributed environment.

Thanks

Our project is supported by:

• Axalto, Gemplus and IBM BlueZ Secure Systems (for
the cards);

• SCM Microsystems and SmartMount (for the readers);

• Sun microsystems (for the overall platform).

We also thank: Fujitsu, Giesecke&Devrient, Oberthur Card
Systems and Sharp for the Java Card samples; David Corco-
ran and Ludovic Rousseau for their work on pcsc-lite
and the CCID generic driver.

REFERENCES

[1] Eve Atallah, Serge Chaumette, Franck Darrigade, Achraf
Karray, and Damien Sauveron. A Grid of Java Cards to Deal
with Security Demanding Application Domains. In Proceed-
ings of e-Smart 2005, Nice, France, September 2005.

[2] Fran Berman, Anthony J.G. Hey, and Geoffrey Fox. Grid
Computing: Making The Global Infrastructure a Reality.
John Wiley & Sons, 2003.

[3] Alvin T.S. Chan, Florine Tse, Jiannong Cao, and Hong Va
Leong. Enabling distributed corba access to smart card appli-
cations. IEEE Internet Computing, pages 27–36, May/June
2002.

[4] Serge Chaumette, Achraf Karray, and Damien Sauveron.
The Software Infrastructure of a Security Platform Java Card
based for the Distributed Applications. In Submitted, 2006.

[5] Ian Foster and Carl Kesselman. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publish-
ers, 1998.

[6] GlobalPlatform. GlobalPlatform. http://www.
globalplatform.org/.

[7] William Grosso. Java RMI. O’Reilly & Associates, 2002.

[8] Scott Guthery and Mary Cronin. Mobile Application Devel-
opment with SMS and the SIM Toolkit. McGraw-Hill Profes-
sional, 2001.

[9] Thimothy M. Jurgensen and Scott B. Guthery. Smart Cards:
The Developer’s Toolkit. Prentice Hall, 2002.

[10] Achraf Karray. Calcul sécurisé sur grille de cartes à puce.
Master’s thesis, ENIS – University of Sfax, 2004.

[11] Roger Kehr, Michael Rohs, and Harald Vogt. Mobile code as
an enabling technology for service-oriented smartcard mid-
dleware. In Internationnal Symposium on Distributed Ob-
jects and Applications, pages 119–130, September 2000.

[12] Inc Sun Microsystem. Java Card 2.2 Runtime Environment
(JCRE) Specification,, 2002. Remote Method Invocation
Service, chapter 8, pages 53-68.

[13] Object Management Group. The OMG’s CORBA Website.
http://www.corba.org.

[14] Karsten Ohme. Open source GlobalPlatform li-
brary. http://sourceforge.net/projects/
globalplatform.

[15] PC/SC Workgroup. PC/SC Workgroup Home. http://
www.pcscworkgroup.com/.

[16] Wolfgang Rankl and Wolfgang Effing. Smart Card Hand-
book 2nd edition. John Wiley & Sons, 2000.

[17] Christoph Siegelin, Laurent Castillo, and Ulrich Finger.
Smart cards: distributed computing with $5 Devices. Par-
allel Processing Letters, 11(1):57–64, 2001.

[18] The Community Resource for Jini Technology. http://
www.jini.org/.

